204 research outputs found

    Modelling the role of angiogenesis and vasculogenesis in solid tumuour growth

    Get PDF
    Recent experimental evidence suggests that vasculogenesis may play an important role in tumour vascularisation. While angiogenesis involves the proliferation and migration of endothelial cells (ECs) in pre-existing vessels, vasculogenesis involves the mobilisation of bone-marrow-derived endothelial progenitor cells (EPCs) into the bloodstream. Once blood-borne, EPCs home in on the tumour site, where subsequently they may differentiate into ECs and form vascular structures. In this paper, we develop a mathematical model, formulated as a system of nonlinear ordinary differential equations (ODEs), which describes vascular tumour growth with both angiogenesis and vasculogenesis contributing to vessel formation. Submodels describing exclusively angiogenic and exclusively vasculogenic tumours are shown to exhibit similar growth dynamics. In each case, there are three possible scenarios: the tumour remains in an avascular steady state, the tumour evolves to a vascular equilibrium, or unbounded vascular growth occurs. Analysis of the full model reveals that these three behaviours persist when angiogenesis and vasculogenesis act simultaneously. However, when both vascularisation mechanisms are active, the tumour growth rate may increase, causing the tumour to evolve to a larger equilibrium size or to expand uncontrollably. Alternatively, the growth rate may be left unaffected, which occurs if either vascularisation process alone is able to keep pace with the demands of the growing tumour. To clarify further the effects of vasculogenesis, the full model is also used to compare possible treatment strategies, including chemotherapy and antiangiogenic therapies aimed at suppressing vascularisation. This investigation highlights how, dependent on model parameter values, targeting both ECs and EPCs may be necessary in order to effectively reduce tumour vasculature and inhibit tumour growth

    Cancer disease: integrative modelling approaches

    Get PDF
    Cancer is a complex disease in which a variety of phenomena interact over a wide range of spatial and temporal scales. In this article a theoretical framework will be introduced that is capable of linking together such processes to produce a detailed model of vascular tumour growth. The model is formulated as a hybrid cellular automaton and contains submodels that describe subcellular, cellular and tissue level features. Model simulations will be presented to illustrate the effect that coupling between these different elements has on the tumour's evolution and its response to chemotherapy

    Traveling waves in a coarse-grained model of volume-filling cell invasion: Simulations and comparisons

    Get PDF
    Many reaction-diffusion models produce traveling wave solutions that can be interpreted as waves of invasion in biological scenarios such as wound healing or tumor growth. These partial differential equation models have since been adapted to describe the interactions between cells and extracellular matrix (ECM), using a variety of different underlying assumptions. In this work, we derive a system of reaction-diffusion equations, with cross-species density-dependent diffusion, by coarse-graining an agent-based, volume-filling model of cell invasion into ECM. We study the resulting traveling wave solutions both numerically and analytically across various parameter regimes. Subsequently, we perform a systematic comparison between the behaviors observed in this model and those predicted by simpler models in the literature that do not take into account volume-filling effects in the same way. Our study justifies the use of some of these simpler, more analytically tractable models in reproducing the qualitative properties of the solutions in some parameter regimes, but it also reveals some interesting properties arising from the introduction of cell and ECM volume-filling effects, where standard model simplifications might not be appropriate

    Pattern formation of scale cells in Lepidoptera by differential origin-dependent cell adhesion

    Get PDF
    We present a model for the formation of parallel rows of scale cells in the developing adult wing of moths and butterflies. Precursors of scale cells differentiate throughout each epithelial monolayer and migrate into rows that are roughly parallel to the body axis. Grafting experiments have revealed what appears to be a gradient of adhesivity along the wing. What is more, cell adhesivity character is maintained after grafting. Thus we suggest that it is a cell’s location prior to migration that determines its interactions during migration. We use nonlinear bifurcation analysis to show that differential origin-dependent cell adhesion can result in the stabilization of rows over spots

    Neural crest migration is driven by a few trailblazer cells with a unique molecular signature narrowly confined to the invasive front

    Get PDF
    Neural crest (NC) cell migration is crucial to the formation of peripheral tissues during vertebrate development. However, how NC cells respond to different microenvironments to maintain persistence of direction and cohesion in multicellular streams remains unclear. To address this, we profiled eight subregions of a typical cranial NC cell migratory stream. Hierarchical clustering showed significant differences in the expression profiles of the lead three subregions compared with newly emerged cells. Multiplexed imaging of mRNA expression using fluorescent hybridization chain reaction (HCR) quantitatively confirmed the expression profiles of lead cells. Computational modeling predicted that a small fraction of lead cells that detect directional information is optimal for successful stream migration. Single-cell profiling then revealed a unique molecular signature that is consistent and stable over time in a subset of lead cells within the most advanced portion of the migratory front, which we term trailblazers. Model simulations that forced a lead cell behavior in the trailing subpopulation predicted cell bunching near the migratory domain entrance. Misexpression of the trailblazer molecular signature by perturbation of two upstream transcription factors agreed with the in silico prediction and showed alterations to NC cell migration distance and stream shape. These data are the first to characterize the molecular diversity within an NC cell migratory stream and offer insights into how molecular patterns are transduced into cell behaviors

    Periodic pattern formation in reaction-diffusion systems -an introduction for numerical simulation

    Get PDF
    The aim of the present review is to provide a comprehensive explanation of Turing reaction–diffusion systems in sufficient detail to allow readers to perform numerical calculations themselves. The reaction–diffusion model is widely studied in the field of mathematical biology, serves as a powerful paradigm model for self-organization and is beginning to be applied to actual experimental systems in developmental biology. Despite the increase in current interest, the model is not well understood among experimental biologists, partly because appropriate introductory texts are lacking. In the present review, we provide a detailed description of the definition of the Turing reaction–diffusion model that is comprehensible without a special mathematical background, then illustrate a method for reproducing numerical calculations with Microsoft Excel. We then show some examples of the patterns generated by the model. Finally, we discuss future prospects for the interdisciplinary field of research involving mathematical approaches in developmental biology

    Pattern formation in heterogeneous domains

    Get PDF
    Development of spatial pattern in the early embryo results from the interaction of several processes in a complex hierarchy of mechanisms. Most models for morphogenesis to date have, however, focussed on a particular mechanism. Although such models are capable of capturing some aspects of development they are inconsistent with key experimental observations. Here we consider a two-step hierarchy of patterning mechanisms in which the spatial pattern of a control chemical regulates morphogen diffusivity in an overlaying reaction diffusion system

    Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains

    Get PDF
    By using asymptotic theory, we generalise the Turing diffusively-driven instability conditions for reaction-diffusion systems with slow, isotropic domain growth. There are two fundamental biological differences between the Turing conditions on fixed and growing domains, namely: (i) we need not enforce cross nor pure kinetic conditions and (ii) the restriction to activator-inhibitor kinetics to induce pattern formation on a growing biological system is no longer a requirement. Our theoretical findings are confirmed and reinforced by numerical simulations for the special cases of isotropic linear, exponential and logistic growth profiles. In particular we illustrate an example of a reaction-diffusion system which cannot exhibit a diffusively-driven instability on a fixed domain but is unstable in the presence of slow growth

    A model invalidation-based approach for elucidating biological signalling pathways, applied to the chemotaxis pathway in R. sphaeroides.

    Get PDF
    BACKGROUND: Developing methods for understanding the connectivity of signalling pathways is a major challenge in biological research. For this purpose, mathematical models are routinely developed based on experimental observations, which also allow the prediction of the system behaviour under different experimental conditions. Often, however, the same experimental data can be represented by several competing network models. RESULTS: In this paper, we developed a novel mathematical model/experiment design cycle to help determine the probable network connectivity by iteratively invalidating models corresponding to competing signalling pathways. To do this, we systematically design experiments in silico that discriminate best between models of the competing signalling pathways. The method determines the inputs and parameter perturbations that will differentiate best between model outputs, corresponding to what can be measured/observed experimentally. We applied our method to the unknown connectivities in the chemotaxis pathway of the bacterium Rhodobacter sphaeroides. We first developed several models of R. sphaeroides chemotaxis corresponding to different signalling networks, all of which are biologically plausible. Parameters in these models were fitted so that they all represented wild type data equally well. The models were then compared to current mutant data and some were invalidated. To discriminate between the remaining models we used ideas from control systems theory to determine efficiently in silico an input profile that would result in the biggest difference in model outputs. However, when we applied this input to the models, we found it to be insufficient for discrimination in silico. Thus, to achieve better discrimination, we determined the best change in initial conditions (total protein concentrations) as well as the best change in the input profile. The designed experiments were then performed on live cells and the resulting data used to invalidate all but one of the remaining candidate models. CONCLUSION: We successfully applied our method to chemotaxis in R. sphaeroides and the results from the experiments designed using this methodology allowed us to invalidate all but one of the proposed network models. The methodology we present is general and can be applied to a range of other biological networks
    • …
    corecore